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Pointer Adaptation and Pruning of Min-Max Fuzzy
Inference and Estimation
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Abstract—A new technique for adaptation of fuzzy member ship
functions in a fuzzy inference system is proposed. The pointer
technique relies upon the isolation of the specific membership
functions that contributed to the final decision, followed by the
updating of these functions parameters using steepest descent.
The error measure used is thus backpropagated from output
to input, through the min and max operators used during the
inference stage. This occurs because tbe operations of min and
max are continuous differentiable functions and, therefore, can
be placed in a chain of partial derivatives for steepest descent
backpropagation adaptation. Interestingly, tbe partials of min
and max act as “pointers’ with the result that only the function
that gaverise to tbe min or max is adapted; the othersare not. To
illustrate, let a=max[3. ... .Ixv]. Then 0a/d.3, =1 when
3, is the maximum and is otherwise zero. We apply this property
to the fine tuning of membership functions of fuzzy min-max
decision processes and illustrate with an estimation example. The
adaptation process can reveal the need for reducing the number of
membership functions. Under the assumption that the inference
surface is in some sense smooth, the process of adaptation can
reveal overdetermination of the fuzzy system in two ways. First,
if two member ship functions come sufficiently close to each other,
they can be fused into a single membership function. Second, if
a membership function becomes too narrow, it can be deleted.
In both cases, the number of fuzzyir—1ue~ rules is reduced. In
certain cases, the overall performance of the fuzzy system can be
improved by this adaptive pruning.

Index Terms- Adaptive estimation, adaptive systems, fuzzy
control, fuzzy sets, fuzzy systems, intelligent systems, knowledge-
based systems.

I. INTRODUCTION

I\/I ODERN decision theory has been very successful in
coping with problems where the system and its struc-
ture have been well defined; notably in cases where good infor-
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mation about the environment and an adequate mathematical
model of the system under control have been available. This
remarkable success in the anafysisof mechanistic systems;
i.e., systems governed by difference, differentia, or integral
equations, has perhaps partly contributed to the belief that such
analysis techniques can be applied equally well to complex
human-centered systems, In his now classic paper on the
foundations of fuzzy systems and decision processes [ 1],
Zadeh takes issue with this point of view in his statement
of the principle of incompatibility, stating that:

As the complexity of a system increases, our ability to

make precise and yet significant statements about its

behavior diminishes until a threshold is reached beyond
which precision and significance (or relevance) become
amost mutually exclusive characteristics.

Consequently, over the years a number of alternative control
schemes, for instance techniques employing neural networks or
fuzzy sets, have been proposed and implemented [2], [3}. We
provide a brief discussion of relevant topics of fuzzy systems
and control here to motivate our approach.

A. Fuzzy Sets

A fuzzy subset A of a universal set X is characterized by
amembership function g 4{x) which assigns areal number
in the closed interval [0, 1] to every element of X' [4]. This
number 4 1 () represents the grade of membership of element
Jin set A, with larger values of it denoting higher degrees
of set membership. '

For example, we can define a possible membership function
for the fuzzy set of real numbers near zero in the following
way:

!

TR

(N
The membership grade of each real number in this fuzzy set
thus represents the degree to which that number is close to 0.

We define a fuzzy variable as a variable that can be described
by a number of different fuzzy sets. For instance, if we have a
tuzzy variable denoted by height, then it could be described as
tall, very tal, nottall, etc. Note that the values that height can
take on can be crisp (well detined and tixed): such as when
we say that a person’s height is 2 m. However, a person with
that height could be described as tall in a fuzzy way.

{ A nunfn//)(cnxp)xc(u‘.m,thcrurur ¢, be viewed as arestreted case ol a

fuzzy set, where the e mbership” tuncuon gy maps cle ments of theunivers
ot discourse to the set {0, | }
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Fig. 1. Block diagram of a general fuzzy In ference systemt The error value
from a giv cn performa nee measure can be fed back and used to adapt all
or one of the following: a) Membership function shapes and cardi natity, h)
and d) AND/OR aggregation operators: ¢) the rule base: ) the defuzzitication
technique.
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Various set operations canbe defined on fuzzy sets, just
as the crisp set case. For instance, it is common to denote
inter-section of two fuzzy sets by the “minimum” operation
applied to the two corresponding memberships functions:’

C=A 1111 = pe(r)

= ttanp(r)

= min [/l‘.\(:l')./lli’('r)] VareX. o
Similarly, the union of two fuzzy sets canbe represented by
the “maximum” operation. These operations are not unique.
Ot her operators for performing fuzzy intersection, union, and
complementation exist [5]. However, the min and imnax opera-
tions are special in the sense that they are the only continuous

and idempotent fuzzy set intersection and union operators,
respectively [5].

B. Fuzzy Inference

Fuzzy inference is based on the concept of the fuzzy
conditional statement: |F A THEN 13, or, for short A = I3,
where the antecedent A and the consequent /3 are fuzzy Sets.

A genera fuzzy inference system consists of three parts
(see Fig. 1). A crisp input is fuzzified by input membership
functions and processed by a fuzzy logic interpretation of a set
of fuzzy rules. This is followed by the defuzzification Stage
resulting in a crisp output. The rule base is typically crafted
by an expert; though self organizing procedures have been
suggested [6]-{15].

There are a number of different ways to implement the
tuzzy inference engine. Among the very first such proposed
techniques is that due to Mamdani [ 1 1], who describes the
inference engine in terms of a fuzzy relation matrix and uses
the compositional rule of inference [ 1] to arrive at the output
fuzzy set for a given input fuzzy set. The output fuzzy set
is subsequently defuzzified to arrive ata crisp control action.
Other techniques include sum-product and threshold inference.
A review of theseis given by Driankov er ¢l |16}

C. Adapration in Fuzzy Inference Systems

All of the stages of the fuzzy inference system are affected
by the choice of certain parameters. A list follows.

llllill(ll.lﬁ):ll(l') II IISI!(II > )
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The Fuzzifier: The fuzzitier in Fig. | maps the input onto
the continuous interval [0. 1] and has the following parameters:
[') the number of membership functions;
2) the shape of the membership functions (e.g., triangle,
Gaussian, etc.)i{

3)the central tendency (e.g., center of mass)and dispersion
(e.g..standard deviation, bandwidth. or range) of the
membership function.

The Inference Engine: The inference engine is the system
“decisionmaker” and determines how the system interprets the
fuzzy linguistics. Its parameters are those of the aggregation
operators which provide interpretation of connective “AND”
and “{m..” An example of a parametrized union operator is
the Yager union [17]:

min[1. (a" -} (;“‘)1/"'].

where the inputs are membership values « and b, and the
parameter w ranges over (0.x).*

The Defuzzifier: The de fuzzification stage maps fuzzy con-
sequent into crisp output values. Its design requires choice
of the following:

1) the number of membership functions;

2) the shape of membership functions;

3) the definition of fuzzy implication, i.e., how the value
of the consequent from the inference engine impact the
output membership functions prior to defuzzification.

4) a measure of central tendency of the altered consequent
output membership functions. The center of mass is
typically used, although medians and modes can aso
beusedto arrive at we Crisp output.

Itis, thus, seen that both the fuzzification and defuzzification
stages require choices of cardinality, position, and shape of
membership functions. The defuzzification operation itself can
be parametrized, and the inference engine requires choices to
be made among numerous fuzzy aggregation operators, which
can be parameterized.

All of these parameters can be adaptively adjusted by mon-
itoring a certain target performance measure in a supervised
learning environment. Over the years numerous techniques
for adaptation of fuzzy membership functions, rule bases, and
aggregationoperators have been proposed. These techniques
include the following,

. Procyk and Mamdani’s self-organizing process controller
[6] which considered the issue of rule generation and
adaptation.

.Numerous methods involving the performing of steepest
descent on the centroid and dispersion parameters of
input and output membership functions [ 18]-{23]. Other

YAS 4 simple example of a parameterized membership function shape,
consider the membership fune tion

wias = (0= (3)

where THee /2y - D tor ] | < 1 and s zero, otherwase. For v = 1. (3)
15 the famifiar ttangle fune ton whiile, for 1= (), 1tis a rectangalar (crisp)
membership funcuon A\ 1 — >, the tunctjon w{ 1 12), by the central limit

theorem, becomes Gausstan In shape (with zero width)

i, min [Lofet byt o] < max e, by
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algorithms such as random search and conjugate gradient
descent can beused in tuning such parameters as well.
Pruning the number of input and output membership
functions (see Section 1V, and[14),[24})).

¢ Adapting the shape of’” membership functions (see footnote
3).

¢ Adaptation of AND/OR aggregation operators. This could
occur when the expert designing the rule base is satis-
fied with both the cardinality and shape of membership
functions, as well as the setting up of rules (see [25]).

A bibliography of these techniques is available [25]. In the
next section, we provide the necessary mathematical back-
ground for understanding the pointer adaptation process, which
isconsidered in Section I11. We describe the adaptation process
and demonstrate via a number of examples. Section IV ex-
pands the discussion by taking a closer look at one of the
artifacts of adaptation (or initialization of the rulebase), which
isa possible overdeterrnination of the fuzzy system. Tech-
niques to overcome this problem in the context of adaptive
inference are provided and verified by examples.

II. PRELIMINARIES

Fuzzy membership functions chosen for a control or de-
cision process may require adaptation for purposes of fine
tuning or adjustment to stationarity changes in the input data.
Use of neural networks to perform this adaptation has been
proposed by Lee et al.[ 18]. Other techniques proposed can be
found in [20]-{23]. Our method more closely parallels that
proposed by Nomura, Hayashi, and Wakarni [22]. In their
work, membership functions are parameterized and steepest
descent is performed with respect to each parameter using
an error criterion, in order to obtain the set of parameters
minimizing the error. To straightforwardly differentiate the
error function with respect to each parameter, they used
products for the fuzzy intersection operation. The output
error backpropagated this way, was used to adjust the fuzzy
membership functions.

Here, we show that the more conventionally used minimum
operation for fuzzy intersection and maximum operation for
fuzzy union can be similarly backpropagated. Unlike the
method of Nomura et al., which updates all fuzzy membership
function parameters in each stage, the pointer method proposed
herein results only in the adjustment of the fuzzy membership
functions that gave rise to the control action or decision output.

A. Differentiation of min and max Operations

Differentiation of the min or max operations results in
a “pointer” that specifies the source of the minimum or
maximum. To illustrate, let

Y= X /F o 3y
N
= Z I (3, - !’)i) (4)
L i

w'here (/(.), aunit step function, is 1 for positive arguments
and is zero otherwise. Note that the maxoperatorin (4) is
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0.5

\©L©)

(b)

Fig. 2. A fuzzy estimation problem. (a) 3-D plot and (b) contour plot. of the
signal to be estimated: t{.ry. 10) = sin{Fry) cos(may) over the domain
{(ry o)y € [-10 1) e € [—-1.1]}

continuous and can be differentiated as

20T vt -0

£#n

_f L
EREE

This result is also intuitively satisfying. Only one of the /3.
let us say acertain j3,,, in (4) isthe maximum. Differentiation
with respect to this number then (when a = 43,,), should result
in a1, and differentiation with respect to any other number
should be zero.

In a smilar way, let

d

if 3, is maximum
otherwise

)

S

MZHI_I['N"\M (6)

1 Ffw

6 = min [yy. 72,

The min function is also continuous and

H( Y = Yu)

£#n
- [ L if v, is minimum ™
(): otherwise

(H "

Indeed, any order statistic operation (e.g., the third largest
number or, for .V odd, the median) can likewise be difteren-
tiated. In each case, the partial derivative points to index of
the order datistic.

. Fuzzy Mix--MAX ESTIMATION

To illustrate adjustment of fuzzy membership functions
by steepest descent, consider the tuzzy estimation problem



ARABSHAHL ¢ af MIN MANX FUZZ Y INFERENCE AND B STIMATION

TABLE L
DECISION TAB EEOR Fuzzy ESTIMATION Tapr ¢ Contents B sunanion
Tant t Contints Reert SIN | rat ESTUmateo Fuzzy Vatur (L1t
Ouiett f ror A Give N CHOICE O VAL UES FOR 1 AND oL Rut S
wii N ConseQuint o1 Posttive Mentum (PM) are HiG G i

T NH NM NS NZ PZ PS PM PH
-2
NH PM | PsS [ NS | N [ NnM | NS | PS | PM
NM PH | PM | Nt NH NH | NM | PM | PH
NS PH [ PM | NM | NH NH| NM { PM |PRH
NZ PM| ps [ ns | Nu | NM | N§ | BS | PM
PZ NM NS PS | PM | PM | PS NS NM
Ps NH NM | PM | PH PH | PM | NM NH
PM NH NM PM | PH PH PM '} NM NH
PH NH NS pS | PM| PM | PS | NS NM

‘NM. NS TP
08f - .
0L NH
02f LS < N
0—1 —68 06 04 -(;.2 1] == 0.2 ”"b‘; 0.6 08 1
(b)

Fig. 3. Initial membership functions for. (a).ry.a2 and (b) f(21..r2). Here,
NH = negative high, NM = negative medium, NS = negative small, NZ. =
negative zero, PZ = positive zero, . . .

illustrated in Fig. 2. We wish to generate an estimate /{1, %2)
of a target function t(21,22) using a set of fuzzy IF ... THEN
rules. Here we have

t(xy, 29) = sin (7x1) cos (maa). (8)

The rule table (Table 1) is generated by partitioning the
domain of t(xy,x2), {(z1,22)|er€[-1,1],22€ [-1, 17}
into 64 (8 X 8) regions and assigning a fuzzy membership
function to each region in accordance to the values of (1,22)
in that region. For instance, if t(x,,x2) takes on values close
to | in certain regions, then the membership function used
for those regions of the domain will be “positive high” (PH).
Initial membership functions for f are thus formed in this way.
The values of 1 and 72 are fuzzified in a similar manner.
The initial membership functions chosen are Gaussian and are
shown in Fig.3 for 1,22 and f(r1,22).

To illustrate, consider the fuzzy IF . THEN rules with a
positive medium (PM) consequent. These are highlighted in
Table 1. Reading from left to right from the top of the table,
they are: 1F a2, iS NH AND r,isNHOR IF rjisPH AND
a»iSNH ORIFuax is NManNDax, is NM OR .

IF «wyis PZ AND a3 is PHITHEN f(x),a0)is PM.

Similar rules exist for the other five categories of f.

699

A. Feedforward Procedure

For purposes of analysis, let the membership functions for
the variable .r; be denoted by ;{.:=1,2, ., N, those for
the variable 22 by g5,/ = 1.2, , M, and those for the
output variable f by j§ k=1.2.--- K.

For a given output membership function s, the rules, as
shown in Table 1, are of the form:

If xyis 4 and x2 is y5 OR

If ry is;t'1 and T2 is ' OR. ..

Then fis k.

Let us define a set Sy as follows:

Ty

Se={1, m|p}and py* are antecedents of a

rule with consequent 15 }. 9)

The operations to arrive at the output are as follows.

1) Perform a pairwise fuzzy intersection (e.g., minimum or
outer product) on each of the membership values of 2
and 22 in 4 and 423" for every rule with consequent /3.
forming activation values (:

k . ! g,
= min T [ a2 .
Clm l,r}}]€5k [/ll( 1)7 Ho ( 2)]

(lo)
2) Collect activation values for like output membership
functions and perform afuzzy union (e.g., maximum).

an

k
.= max .
Wy L mes, (Clm)

3) These values are defuzzified to generate the output
estimated value, f(21,2), by finding the centroid of
the composite membership function 4

x
= Z wipk (12
k=1
K
Z WeCr Ar
k=1
flay, xo)=- R (13)
Z 7”kAk
k=1
where
Ap = / ph(x)de, (14)
ey de
= T (15)

Ay and e are, respectively, the area and centroid of the
consequent membership function 45 .



700 IEEE TRANSACHIONS ON (C11< CUIISAND SYSTEMS 11

Backpropagation Adjustment: Expert heuristics are typi-
caly used to specity the membership functions for the input
(.I'1, .ry ) and output (f). These functions can be adapted or
fine tuned using supervised learning. The steps to adapt the
input membership functions are as follows.

We first form the error function by taking the squared
difference between the estimated output f,and the desired
target value ¢:

’ 2
E=1(f-0% (16)
Assume now that we wish to update parameters of a Gauss-
ian membership function that appears either in the antecedent
or the consequent of a rule. Denote these parameters by 1} [q]

and the corresponding membership function by #i-In our

example, for 1 = 1, 2, the index i=1, 2,-...8 and for
[ =3, theindex:=1,2,---, 6, g= 1,2, and
Q- ’”1[ )?
H xTr) = 17
it = o { e )

For instance, m3[1] would represent parameter number 1 (of
2) of membership function number 7 (of 8) of tbe variable .12.

The steepest descent update rule is

Ik
mi [ «<=m;[q] - )m,[qﬂ (18)
We have, for the general case
ok OPOE of ()ufk oy
amile) - O, Z (;ulk Ay )En ol (19)

This in turn can be written in the following way [see ( 10)
and (11)]:

or  0F Hwy, (1C,m> ,Qf’,li,,,.
()m'[q T Of Z ()u)k | Z (OC[,” o amilql
(20)
From (5) and (7), and referring to ( 10) and (11), we obtain:
Jw . .
ac = Sl = dhl (21)
d ok ;
—(-)_CJ—L,L[ = é[qlkm - lll] (22)
1y

where 4[], the Kronecker delta function, is equal to one for
zero arguments and is zero otherwise.
Substituting the above two equations in (20), we obtain

OF

il
OF o f(w ) N N ,
= - 2L - H —
()f Z e . ;ESA ()’[1”’* Alm} [klm .“[])
()/1 ,
) 23
o [1] (23)

The two Kronecker delta functions now serve to isolate the
membership function Whose parameter iS being updated, Other
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PH,

04 X X . k 1

Fig. 4. Final membership functions for (a)i;. (b)ay. and (c) flay, 12).
Here NH = negative high, NM = npegative medium, NS = negative small,
NZ. = negative zero, PZ = positive zero, . .

membership functions that are not used in the decision process
are not adapted. Equation (23) finally simplifies to

or ok Ofluj(a flui()) E)/{}' 24)
om; [q] af Oy dmilq]
where
K
Ay Z wyAp(er — )

()f R S (25)
o 7S K 2 )

(Z 11'1,(‘1,)

p—1

In general, yj is a function of many parameters m; [d],
q = 1.2, ---. For our estimation problem, using Gaussian
membership functions, there are two parameters to adapt.
These are the mean (mn}[1]), and the variance (1n}(2]). We
thus have

Dy (v —my[1]) R
T e 26
ami1) HE= i ni[2))? 26)
iy e -n;[l] )2
= L (27

Gl M G

B. Kt .ault.s

We present here results of the application of this technique
to the estimation problem discussed in Section lil. Fig. 4
illustrates the input and output membership functions after
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Fig. 5. Result of fuzsy estimation. (a) 3-1) plot. (b) Contour plot, of
the estimated signal f(.rj, r2)=sill ( %.1,) cos (mi1y) over the domain
{(rr2)r € 21, 17. a9 € [-1, 1)

adaptation and Fig. 5 shows the (much improved) estimation

result

V. ADAPTIVE PRUNING OF Fuzzy INFERENCE SYSTEMS

As we have shown, the parameters of the input and output
fuzzy membership functions for fuzzy 1¥-THEN inference can
be adapted using supervised learning applied to training data.
The specific case of adaptation of rein- max inference using
steepest descent has the advantage of adapting only those
membership functions used in the fuzzy decision process for
each training data input—output pair.

In the process of adapting, two membership functions may
drift close together. If the underlying target surface which we
wish to estimate is smooth, then the membership functions can
be fused into a single membership function. Alternately, if a
membership function becomes too narrow, it can be totally
deleted. In either case, the fuzzy decision process is pruned.
In artificial neural networks, pruning neurons from hidden
layers can improve the performance of the neural network [26].
Likewise, the performance of fuzzy inference can be improved
through the adaptation and pruning of membership functions.
The number of IF~THENTules is also correspondingly reduced.

Assume that the center of mass of ;4 (membership function
. of input variable @1 ) ism{ [ 1] and the dispersion (spread) of
j¢i is parametrized by 4 [2]. The parameter i [2] is also pro-
portional to the area of 4. The membership functions s, (for
input o) and ;% (for the output) are likewise parametrized,

WHe N Tee MiMBE K$'tilt FUNCHONFOR Y ) = ZIN THE LEFT TABL F IN
Tast e 111S ANNiHi aTe 0, The RULE T ABL t SHows Here RE surTs

g |NVZ|P
Y
N Z|P}|P
P N|N|Z

TABLE IV
TARGET RULE FOR Exampre |

yl1]2{3

T

1 11211

2 2132

3 1{27]1

TABLE Vv

Rut ¢ TABLE FOR Examet F 1

y|1|2|3|4|5]|6lT718|9]| 10|11
a
1 1 1 11213 3||3i2 1 b 1
2 1111213 [3[3{3]3]2]1 1
3 12121334332} 2 1
4 2331414514 4{31] 3 2
s ,3]3|3}afs|s5]s5]aJa]3]s
6 1313141515151p151 413 1] 3
7 [3[3[3]4]s][5]|5][4]3]3 3
8 2131314141514 1413 3 2
9 1111112133321 1 1
10 1({1]12(33|313|3}2] 1 1
11 112 (2]13]|3|41313121 2 1

If the output membership functions are 1%, then the defuzzi-
fied output using the center of mass of the sum of weighted
output membership functions is

Z Mz, Oz,
o=-F ... .. (28)

E pOz,

z

Although we will use min-max inference, the pruning
procedure described below can be applied to other fuzzy
inference methods, wherein, for example, aternate forms of
defuzzification are used or intersections and unions other than
minand max are employed [5], [27].

Herein, we will assume &l linguistic variables are scaled
to the universe of discourse on the interval [-1, 1]. Gaussian
membership functions of the form

L

mt 1] and o = m! 2.

p(ar) = exp

will be used throughout (n



02 it TR NSACHO GG ON CIRCUTES AnD sysTenes o4 N O0AND PG S x T prOCESS G var FENO ST g MBER 19
0 . . .
1 08 06 04 02 0 02 04
1 N v v v i v
08 A
os| ‘
04l 2
02" / .
0 / ‘-\» e 0 e ad
-1 08 66 04 02 o 02 -1 08 08 44 02 0 02 04 o6 OB 1
() ()
Fig. 6. (a) [nitial membership functions for Example 1. The top, middle, and bottom plots are for jrx, - gy, cand gz, respectively. (b) Initial membership

functions. (¢)- (n) Evolution of the adaptation, fusion, and annihifation process.

A. Membership Function Fusion

Fusion of two membership functions occurs when they
become sufficiently close to each other. Annihilation occurs
yvhen a membership function becomes sufticiently narrow. As
illustratedinFig. 10, two membership functions are fused
when the supremum of their intersection exceeds a threshold,
~. It the means of the membership functions prior to fusion

are m ( and m, then the meanof the fused membership is
set equalto the center of mass of the sum of the membership
functions

myay - omoeos
Mision = -
s (Tl <+ nl
the spread parameters of the two
Similarly. the spread of the fused

where @ | and 72 are
membership functions.
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function is obtained from

3 R
N ay oy

Tfus jon

Membership fusion has adirect impact on the fuzzy decision
process. 1o illustrate, consider Table 11. Here, N = negative,
7 =nearzero,and f* = positive. Assume that the membership
functions for . corresponding to N and 7 fuse. The two
left most columns of the rule table are combined into one.

0

T v v

08 :
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(¢) (hy Evolution of the adaptation, fusion, and annihilation process.

A new linguistic variable, caled N7 labels this column. It
remainsto specify the corresponding rules. When two adjacent
rules are the same prior to fusing. the answer is simple. For
example, since .\';= Nand Z both have 7 as a consequent
for ¥, = 7, the clear choice for the fused rEIe t?blg for
X=NZandY,=7 is the consequent Z. For k=7
however, there are different consequent when XioN and
X,=7. To determine the consequent for’ X;=NZ apd
Y, -- NV (marked “7?" in Table 1), we chose to query the
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Fig. 6. (Continued.) Gy (1) Evolution of the adaptation, fusion, and annihilation process

training data base. Specifically. training data was found where
(r. y) = (myz.my ). The value 0! the target, /, tor this
input pair is compared to the means ©f the existing output
membership functions. The membership function having the
closest mean is assigned as the consequent.

Output membership functions can also fuse. If, for example,
the output 7 fuses with N in the left-hand rule table in
T:ablc [1, the resulting fused rule table will place NV Zs in the
siX boxes currently occupied with Zs or V.

Once fusion occurs, the membership functions are further
adapted to the training data. Additional fusion or annihilation
can follow.

B. Membership Function Annihilation

It the contribution of a function
becomes insignificant, then it can be annihilated. To illustrate,
consider Fig. 1. The membership function jio(r) becomes

with

fuszy membership

insignificant respect  to the membership  function,
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y1 (r), when, for al .
oy (1) > Boapy ()

where 3> 1 parameterizes the degree of insignificance High
i3 corresponds to a severe criterion for annihilation. It is
sufficient for the above criterion to hold only for . =y

o1y (m2) > Bogpa(msy)
:iﬂ('fg.

The process is vaid when the underlying target surface
is smooth.

When an input membership function is annihilated, all rules
using it are deleted from the fuzzy rule base. For example, if
the membership function corresponding toY;= 7 in the left-
hand rule table in Table Il is annihilated. then the rule table
after annihilationwould be as shown in Table I11.

An output membership function can likewise be annihilated.
In such a case, one of the remaining membership functions
must take its place in the rule table. The choice, again,is
made Dy a query to the training data base as was done for
input membership function fusion.

After annihilation, the membership parameters can be fur-
ther adapted using the training data. Additional annihitation
and/or fusion might subsequently result.

C. Examples

We itlustrate the process of membership function fusion and
annihilation with two examples. Thetirstisaproof of principle
wherein convergence IS to @ solution known to be optimal.
The second uses adaptation to fit a given target surface W e
usedthe parameters , § — 2and y=0.9for input membership
functions and y = 0.95 for the output. Iteration was performed

TS

U S S T

_—

O ms 06 04 02 0 o0z 04 06 o0z |

(m) (n) Evolution of the adaptation, fusion, and annihijation process.

until A7/F ~ 107 *.Incases where a membership function
could either be fused or annihilated, annihilation was given
priority.

1) Convergence to a Known Solution: in this example, the
target membership functions shown in Fig. 6 were used. The
target rule table is shown in Table IV. Using a universe of
discourse on [— 1, 1], the membership functions are indexed
from 1 for large negative numbers upward, The largest index
corresponds to large positive numbers.

A tota of 500 training data points were randomly generated
from these target functions.

Overdetermined initialization is shown in Fig. 6(b) with
a rule table shown in Table V. Input membership functions
are spaced evenly. Spacing of output membership functions
is determined from a histogram of the training data target
values. The histogram is divided into intervals of equal area.
The number of intervals is chosen to be equal to the number
of output membership functions. The means of the output
membership functions are places at the boundaries of these
intervals.

The resuht of the first steepest descent adaptation is shown
in Fig. 6(c). Compare this to Fig. 6(d). The two left most
membership functions for .~ (top plot) fuse. The third fuse.
The third membership function for .» is annihilated, etc. For
the output, two membership functions are annihilated. The rule
table becomes that shown in I’able VL

The membership tunctions in Fig. 6(d) are further trained.
The result is shown in Fig. 6(e). Compare this to Fig. 6(1),
where four input membership functions are annihilated. The
results of Fig.6(1) are adapted and converge to the result
shown in Fig. 6(g). As can be seenin Fig. 6(h), two more input
membership functions are annihilated. Further iteration yields
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Ei 6(i). For y (middle plot), three membership )
g. functions fuse

to two membership functions [see Fig.6(j)]l. The fuzzy rule
table cor.responding to Fig. 6(j) is asshownin Table VII. The
results in Fig. 6(j) are adupted to those shown in Fig. 6(k).
Fusion occurs asshown in Fig. 6(1). Additional ydaptation
results in the middle two membership functions far & (middle
plot) shown in Fig. 6(m) to be graphically '™ stnguishe )
They arefused in Fig. 6(n). The rule table is now exactly the
target table in Table [V, The input membership functions are
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Fig. 8 Contour plots of the ) target, (b initialization, and (¢) inal result
tor Example 2.

the same as in Fig. 6(x). The output membership functions are
not the same; all defuzzitications from these membership func-
tions though, are. Output membership functions {jiz, (o)} will
yield the same defuzzitication as the membership functions
{yt7, (/o)) when defuzzitication is performed as in (28).

2) Regression Fitting of ¢ Surfuce: In this example, we as-
sume. from (8), a target surtace of f{ry + r2o 0 — ro). The
initial membership functions are shown in Fig. 7(a). A contour
plot of the target is shown in Fig. %(a). The first initialization
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my M2

Fig. 10. Mustration of the criterion for fusion. When two membership
functions become sufticiently close so that the maximum of their intersection
exceeds -, then  the  two members hip functjons are fused into a single
membership function
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Fig. | |. Hfustration of the process of membership function annihilation.
When the membership function, s (), becomes narrow with respect to an
adjacent membe rship function, it can be annihilated.

isshown in Fig. 8(b). A total of ten steps of iteration followed
by fusion and annihilation were required prior to convergence.
The results are shown in Figs. 7(b) and 8(¢). Convergence
mean square error is shown in Fig. 9. Between odd and even
steps (.g., 3 and 4), error is reduced by steepest descent.
Between the even and odd steps (e.g., 4 and 5) fusion and
annihilation are applied, generally resulting in an increase in
error.

The fina rule table is shown in Table VIII. The number
of rules has been reduced from 441 (21°)to 169 (13*). The
cardinality of [he set of consequent has been reduced from
8 to 5.

V. CONCL.USION

We have considered a new technique for adaptation of
fuzzy membership functions in atuzzy inference system. The
technique relies upon the isolation of the specitic membership
function that contributed to the final decision, tollowed by the

107
TABL E VI
Fisar RO 1o por Exoasper 102

Y 1 2] 3 1 5 6 71 8 9|10 1l 12113
I
1 31 4 4 3 2 2 3 4 4 3 2 2 3
2 4l s|s[4]3[3]4]5]5 4 3 3 4
3 4 15| 54]|3]|]3([4]|]5]|¢5 4 3 3 4
4 3 4 4 3 2 2 3 4 4 3 2 2 3
5 2 3 3 2 1 1 2 3 3 2 1 1 2
6 2 3]sl 1t 23321 112
7 3 4 4 3 2 2 3 4 4 3 2 2 3
8 4| 5] 5]al3]3]4]5]5]|4 33| 4
9 4151514133 [4]5]5 4 3 3 4
10 3141413212 (3]4]4 3 2 2 3
11 2133|211 ]11]2|3]3 2 1 1 2
12 213321 11]2]3]3] 2 1 1 2
13 3141413122 ]3]4]4 3 2 2 3

updating of this function’s parameters using steepest descent.
The error measure used is thus backpropagated from output
to input, through the min and inax operators used during
the inference stage. This was shown to be feasible because
the operations of min and max are continuous differentiable
functions and, therefore, can be placed in a chain of partial
derivatives for steepest descent backpropagation adaptation.
More interestingly, it was shown the partials of min and max
(or any other order statistic, for that matter) act as “pointers’
with the result that only the function that gave rise to the miu
or max is adapted; the others are not. We applied this property
to the fine tuning of membership functions of fuzzy min-max
decision processes and illustrated with an estimation example.

Membership functions can be parameterized in ways other
than those considered here as well. In general, the shape
of the membership functions of’ the control action can be
used to assess the quality of the roles. A strong single
peak in the membership function signifies the presence of a
dominant control rule;two distinct strong peaks are a sign
of the existence of contradictory rules; and a very low or
weak membership value of the maximum of the membership
function indicates that some rules are missing, and the rule
database is incomplete [28]. Thus, parameterizing the peak
value of the membership function, in addition to its mean
and variance, can provide further improvements in the fuzzy
control process.

We also looked at adaptive pruning of fuzzy inference
systems asa solution to the problem of overdetermination in
fuzzy systems. This resulted in a reduced-complexity system
with similar or better performance.
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